Числа заполнения - définition. Qu'est-ce que Числа заполнения
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Числа заполнения - définition

Числа заполнения

ЧИСЛА ЗАПОЛНЕНИЯ      
в квантовой теории , числа частиц квантовой системы, находящихся в каждом из ее возможных состояний; используются как динамические переменные в методе вторичного квантования.
Числа заполнения      

в квантовой механике и квантовой статистике, числа, указывающие степень заполнения квантовых состояний частицами квантово-механической системы многих тождественных частиц (См. Тождественные частицы). Для системы частиц с полуцелым Спином (фермионов) Ч. з. могут принимать лишь два значения: 0 для свободных состояний и 1 для занятых, для системы частиц с целым спином (бозонов) - любые целые числа: 0, 1, 2,... Сумма всех Ч. з. должна быть равна числу частиц системы. С помощью Ч. з. можно описывать и числа элементарных возбуждений (квазичастиц (См. Квазичастицы)) квантовых полей; в этом случае их сумма не фиксирована. Средние по статистически равновесному состоянию Ч. з. для идеальных квантовых газов определяются функциями распределения Ферми - Дирака и Бозе - Эйнштейна [см. Статистическая физика, формула (19)]. Понятие Ч. з. лежит в основе метода квантования вторичного (См. Квантование вторичное), который называется также "представлением Ч. з.".

Д. Н. Зубарев.

Гиперболические числа         
Гиперболические числа, или двойны́е чи́сла, паракомпле́ксные чи́сла, расщепля́емые компле́ксные чи́сла, компле́ксные чи́сла гиперболи́ческого ти́па, контркомпле́ксные чи́слаС. А.

Wikipédia

Одноэлектронное приближение

Одноэлектронное приближение — приближённый метод нахождения волновых функций и энергетических состояний квантовой системы со многими электронами.

В основе одноэлектронного приближения лежит предположение, что квантовую систему можно описать как систему отдельных электронов, движущихся в усреднённом потенциальном поле, которое учитывает взаимодействие как с ядрами атомов, так и с другими электронами. Волновая функция многоэлектронной системы в одноэлектронном приближении выбирается в виде детерминанта Слэтера определённого набора функций, зависящих от координат одной частицы. Эти функции являются собственными функциями одноэлектронного гамильтониана с усреднённым потенциалом.

В идеале потенциал, в котором движутся электроны, должен быть самосогласованным. Чтобы достичь этой цели, используют итерационную процедуру, например, метод Хартри-Фока или его релятивистское обобщение — приближение Хартри-Фока-Дирака. Однако часто систему описывают модельным потенциалом.

Qu'est-ce que ЧИСЛА ЗАПОЛНЕНИЯ - définition